반응형

겨울철 원격 시동시 OFF로 초기화 되는 순정 열선 모듈, 메모리 모듈로 따듯하게.

반응형
반응형
#include <IRremote.h>

int RECV_PIN = 11;
IRrecv irrecv(RECV_PIN);
decode_results results;

void setup() {
  Serial.begin(9600);
  irrecv.enableIRIn();
}

void loop() {
  if (irrecv.decode(&results)) {
    Serial.println(results.value, HEX);
    irrecv.resume();
  }
}

FFFFFFFF 출력으로 문제된 대부분의 사람들이 위와 같은 예제 소스코드로 테스트를 했을 것이다.

 

그리고 IR 수신회로를 구성하여 리모컨을 눌렀을 때 위와 같이 FFFFFFFF의 데이터만 수신 했을것이다.

 

#include <IRremote.h>

int RECV_PIN = 11;
IRrecv irrecv(RECV_PIN);

void setup() {
  Serial.begin(9600);
  irrecv.enableIRIn();
}

void loop() {
  if (irrecv.decode()) {
    Serial.println(irrecv.decodedIRData.decodedRawData, HEX);
    irrecv.resume();
  }
}

소스코드를 위와 같이 수정하여 업로드 해보자

 

값이 제대로 출력되는 것을 확인할 수 있다.

 

수신된 데이터를 식별할 수 없는 상태에서 decode 함수에 인자 값이 전달되면 FFFFFFFF를 반환 하게된다. 이를 해결하기 위해 원시 데이터를 직접 출력하여 해결할 수 있다.

반응형
반응형

Servo.h

/*
  Servo.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
  Copyright (c) 2009 Michael Margolis.  All right reserved.

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License as published by the Free Software Foundation; either
  version 2.1 of the License, or (at your option) any later version.

  This library is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  Lesser General Public License for more details.

  You should have received a copy of the GNU Lesser General Public
  License along with this library; if not, write to the Free Software
  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*/

/* 
  A servo is activated by creating an instance of the Servo class passing 
  the desired pin to the attach() method.
  The servos are pulsed in the background using the value most recently 
  written using the write() method.

  Note that analogWrite of PWM on pins associated with the timer are 
  disabled when the first servo is attached.
  Timers are seized as needed in groups of 12 servos - 24 servos use two 
  timers, 48 servos will use four.
  The sequence used to seize timers is defined in timers.h

  The methods are:

    Servo - Class for manipulating servo motors connected to Arduino pins.

    attach(pin )  - Attaches a servo motor to an I/O pin.
    attach(pin, min, max  ) - Attaches to a pin setting min and max values in microseconds
    default min is 544, max is 2400  
 
    write()     - Sets the servo angle in degrees.  (invalid angle that is valid as pulse in microseconds is treated as microseconds)
    writeMicroseconds() - Sets the servo pulse width in microseconds 
    read()      - Gets the last written servo pulse width as an angle between 0 and 180. 
    readMicroseconds()   - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
    attached()  - Returns true if there is a servo attached. 
    detach()    - Stops an attached servos from pulsing its I/O pin. 
 */

#ifndef Servo_h
#define Servo_h

#include <inttypes.h>

/* 
 * Defines for 16 bit timers used with Servo library 
 *
 * If _useTimerX is defined then TimerX is a 16 bit timer on the current board
 * timer16_Sequence_t enumerates the sequence that the timers should be allocated
 * _Nbr_16timers indicates how many 16 bit timers are available.
 */

// Architecture specific include
#if defined(ARDUINO_ARCH_AVR)
#include "avr/ServoTimers.h"
#elif defined(ARDUINO_ARCH_SAM)
#include "sam/ServoTimers.h"
#elif defined(ARDUINO_ARCH_SAMD)
#include "samd/ServoTimers.h"
#elif defined(ARDUINO_ARCH_STM32F4)
#include "stm32f4/ServoTimers.h"
#elif defined(ARDUINO_ARCH_NRF52)
#include "nrf52/ServoTimers.h"
#elif defined(ARDUINO_ARCH_MEGAAVR)
#include "megaavr/ServoTimers.h"
#elif defined(ARDUINO_ARCH_MBED)
#include "mbed/ServoTimers.h"
#elif defined(ARDUINO_ARCH_RENESAS)
#include "renesas/ServoTimers.h"
#else
#error "This library only supports boards with an AVR, SAM, SAMD, NRF52 or STM32F4 processor."
#endif

#define Servo_VERSION           2     // software version of this library

#define MIN_PULSE_WIDTH       544     // the shortest pulse sent to a servo  
#define MAX_PULSE_WIDTH      2400     // the longest pulse sent to a servo 
#define DEFAULT_PULSE_WIDTH  1500     // default pulse width when servo is attached
#define REFRESH_INTERVAL    20000     // minimum time to refresh servos in microseconds 

#define SERVOS_PER_TIMER       12     // the maximum number of servos controlled by one timer 
#define MAX_SERVOS   (_Nbr_16timers  * SERVOS_PER_TIMER)

#define INVALID_SERVO         255     // flag indicating an invalid servo index

#if !defined(ARDUINO_ARCH_STM32F4)

typedef struct  {
  uint8_t nbr        :6 ;             // a pin number from 0 to 63
  uint8_t isActive   :1 ;             // true if this channel is enabled, pin not pulsed if false 
} ServoPin_t   ;  

typedef struct {
  ServoPin_t Pin;
  volatile unsigned int ticks;
} servo_t;

class Servo
{
public:
  Servo();
  uint8_t attach(int pin);           // attach the given pin to the next free channel, sets pinMode, returns channel number or INVALID_SERVO if failure
  uint8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes. 
  void detach();
  void write(int value);             // if value is < 200 its treated as an angle, otherwise as pulse width in microseconds 
  void writeMicroseconds(int value); // Write pulse width in microseconds 
  int read();                        // returns current pulse width as an angle between 0 and 180 degrees
  int readMicroseconds();            // returns current pulse width in microseconds for this servo (was read_us() in first release)
  bool attached();                   // return true if this servo is attached, otherwise false 
private:
   uint8_t servoIndex;               // index into the channel data for this servo
   int8_t min;                       // minimum is this value times 4 added to MIN_PULSE_WIDTH    
   int8_t max;                       // maximum is this value times 4 added to MAX_PULSE_WIDTH   
};

#endif
#endif

 


Servo.cpp

/*
 Servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
 Copyright (c) 2009 Michael Margolis.  All right reserved.

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

#if defined(ARDUINO_ARCH_AVR)

#include <avr/interrupt.h>
#include <Arduino.h>

#include "Servo.h"

#define usToTicks(_us)    (( clockCyclesPerMicrosecond()* _us) / 8)     // converts microseconds to tick (assumes prescale of 8)  // 12 Aug 2009
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds


#define TRIM_DURATION       2                               // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009

//#define NBR_TIMERS        (MAX_SERVOS / SERVOS_PER_TIMER)

static servo_t servos[MAX_SERVOS];                          // static array of servo structures
static volatile int8_t Channel[_Nbr_16timers ];             // counter for the servo being pulsed for each timer (or -1 if refresh interval)

uint8_t ServoCount = 0;                                     // the total number of attached servos


// convenience macros
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER)       // returns the index of the servo on this timer
#define SERVO_INDEX(_timer,_channel)  ((_timer*SERVOS_PER_TIMER) + _channel)     // macro to access servo index by timer and channel
#define SERVO(_timer,_channel)  (servos[SERVO_INDEX(_timer,_channel)])            // macro to access servo class by timer and channel

#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4)  // minimum value in us for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4)  // maximum value in us for this servo

/************ static functions common to all instances ***********************/

static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA)
{
  if( Channel[timer] < 0 )
    *TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
  else{
    if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true )
      digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated
  }

  Channel[timer]++;    // increment to the next channel
  if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
    *OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks;
    if(SERVO(timer,Channel[timer]).Pin.isActive == true)     // check if activated
      digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
  }
  else {
    // finished all channels so wait for the refresh period to expire before starting over
    if( ((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL) )  // allow a few ticks to ensure the next OCR1A not missed
      *OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
    else
      *OCRnA = *TCNTn + 4;  // at least REFRESH_INTERVAL has elapsed
    Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
  }
}

#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
// Interrupt handlers for Arduino
#if defined(_useTimer1)
SIGNAL (TIMER1_COMPA_vect)
{
  handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif

#if defined(_useTimer3)
SIGNAL (TIMER3_COMPA_vect)
{
  handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif

#if defined(_useTimer4)
SIGNAL (TIMER4_COMPA_vect)
{
  handle_interrupts(_timer4, &TCNT4, &OCR4A);
}
#endif

#if defined(_useTimer5)
SIGNAL (TIMER5_COMPA_vect)
{
  handle_interrupts(_timer5, &TCNT5, &OCR5A);
}
#endif

#elif defined WIRING
// Interrupt handlers for Wiring
#if defined(_useTimer1)
void Timer1Service()
{
  handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif
#if defined(_useTimer3)
void Timer3Service()
{
  handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif
#endif


static void initISR(timer16_Sequence_t timer)
{
#if defined (_useTimer1)
  if(timer == _timer1) {
    TCCR1A = 0;             // normal counting mode
    TCCR1B = _BV(CS11);     // set prescaler of 8
    TCNT1 = 0;              // clear the timer count
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
    TIFR |= _BV(OCF1A);      // clear any pending interrupts
    TIMSK |=  _BV(OCIE1A) ;  // enable the output compare interrupt
#else
    // here if not ATmega8 or ATmega128
    TIFR1 |= _BV(OCF1A);     // clear any pending interrupts
    TIMSK1 |=  _BV(OCIE1A) ; // enable the output compare interrupt
#endif
#if defined(WIRING)
    timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
#endif
  }
#endif

#if defined (_useTimer3)
  if(timer == _timer3) {
    TCCR3A = 0;             // normal counting mode
    TCCR3B = _BV(CS31);     // set prescaler of 8
    TCNT3 = 0;              // clear the timer count
#if defined(__AVR_ATmega128__)
    TIFR |= _BV(OCF3A);     // clear any pending interrupts
	ETIMSK |= _BV(OCIE3A);  // enable the output compare interrupt
#else
    TIFR3 = _BV(OCF3A);     // clear any pending interrupts
    TIMSK3 =  _BV(OCIE3A) ; // enable the output compare interrupt
#endif
#if defined(WIRING)
    timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service);  // for Wiring platform only
#endif
  }
#endif

#if defined (_useTimer4)
  if(timer == _timer4) {
    TCCR4A = 0;             // normal counting mode
    TCCR4B = _BV(CS41);     // set prescaler of 8
    TCNT4 = 0;              // clear the timer count
    TIFR4 = _BV(OCF4A);     // clear any pending interrupts
    TIMSK4 =  _BV(OCIE4A) ; // enable the output compare interrupt
  }
#endif

#if defined (_useTimer5)
  if(timer == _timer5) {
    TCCR5A = 0;             // normal counting mode
    TCCR5B = _BV(CS51);     // set prescaler of 8
    TCNT5 = 0;              // clear the timer count
    TIFR5 = _BV(OCF5A);     // clear any pending interrupts
    TIMSK5 =  _BV(OCIE5A) ; // enable the output compare interrupt
  }
#endif
}

static void finISR(timer16_Sequence_t timer)
{
    //disable use of the given timer
#if defined WIRING   // Wiring
  if(timer == _timer1) {
    #if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
    TIMSK1 &=  ~_BV(OCIE1A) ;  // disable timer 1 output compare interrupt
    #else
    TIMSK &=  ~_BV(OCIE1A) ;  // disable timer 1 output compare interrupt
    #endif
    timerDetach(TIMER1OUTCOMPAREA_INT);
  }
  else if(timer == _timer3) {
    #if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
    TIMSK3 &= ~_BV(OCIE3A);    // disable the timer3 output compare A interrupt
    #else
    ETIMSK &= ~_BV(OCIE3A);    // disable the timer3 output compare A interrupt
    #endif
    timerDetach(TIMER3OUTCOMPAREA_INT);
  }
#else
  //For Arduino - in future: call here to a currently undefined function to reset the timer
  (void) timer;  // squash "unused parameter 'timer' [-Wunused-parameter]" warning
#endif
}

static boolean isTimerActive(timer16_Sequence_t timer)
{
  // returns true if any servo is active on this timer
  for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
    if(SERVO(timer,channel).Pin.isActive == true)
      return true;
  }
  return false;
}


/****************** end of static functions ******************************/

Servo::Servo()
{
  if( ServoCount < MAX_SERVOS) {
    this->servoIndex = ServoCount++;                    // assign a servo index to this instance
	servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH);   // store default values  - 12 Aug 2009
  }
  else
    this->servoIndex = INVALID_SERVO ;  // too many servos
}

uint8_t Servo::attach(int pin)
{
  return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}

uint8_t Servo::attach(int pin, int min, int max)
{
  if(this->servoIndex < MAX_SERVOS ) {
    pinMode( pin, OUTPUT) ;                                   // set servo pin to output
    servos[this->servoIndex].Pin.nbr = pin;
    // todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
    this->min  = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 us
    this->max  = (MAX_PULSE_WIDTH - max)/4;
    // initialize the timer if it has not already been initialized
    timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
    if(isTimerActive(timer) == false)
      initISR(timer);
    servos[this->servoIndex].Pin.isActive = true;  // this must be set after the check for isTimerActive
  }
  return this->servoIndex ;
}

void Servo::detach()
{
  servos[this->servoIndex].Pin.isActive = false;
  timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
  if(isTimerActive(timer) == false) {
    finISR(timer);
  }
}

void Servo::write(int value)
{
  if(value < MIN_PULSE_WIDTH)
  {  // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
    if(value < 0) value = 0;
    if(value > 180) value = 180;
    value = map(value, 0, 180, SERVO_MIN(),  SERVO_MAX());
  }
  this->writeMicroseconds(value);
}

void Servo::writeMicroseconds(int value)
{
  // calculate and store the values for the given channel
  byte channel = this->servoIndex;
  if( (channel < MAX_SERVOS) )   // ensure channel is valid
  {
    if( value < SERVO_MIN() )          // ensure pulse width is valid
      value = SERVO_MIN();
    else if( value > SERVO_MAX() )
      value = SERVO_MAX();

    value = value - TRIM_DURATION;
    value = usToTicks(value);  // convert to ticks after compensating for interrupt overhead - 12 Aug 2009

    uint8_t oldSREG = SREG;
    cli();
    servos[channel].ticks = value;
    SREG = oldSREG;
  }
}

int Servo::read() // return the value as degrees
{
  return  map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
}

int Servo::readMicroseconds()
{
  unsigned int pulsewidth;
  if( this->servoIndex != INVALID_SERVO )
    pulsewidth = ticksToUs(servos[this->servoIndex].ticks)  + TRIM_DURATION ;   // 12 aug 2009
  else
    pulsewidth  = 0;

  return pulsewidth;
}

bool Servo::attached()
{
  return servos[this->servoIndex].Pin.isActive ;
}

#endif // ARDUINO_ARCH_AVR

 


ServoTimers.h

/*
  Servo.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
  Copyright (c) 2009 Michael Margolis.  All right reserved.

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License as published by the Free Software Foundation; either
  version 2.1 of the License, or (at your option) any later version.

  This library is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  Lesser General Public License for more details.

  You should have received a copy of the GNU Lesser General Public
  License along with this library; if not, write to the Free Software
  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*/

/*
 * Defines for 16 bit timers used with Servo library
 *
 * If _useTimerX is defined then TimerX is a 16 bit timer on the current board
 * timer16_Sequence_t enumerates the sequence that the timers should be allocated
 * _Nbr_16timers indicates how many 16 bit timers are available.
 */

/**
 * AVR Only definitions
 * --------------------
 */

// Say which 16 bit timers can be used and in what order
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define _useTimer5
#define _useTimer1
#define _useTimer3
#define _useTimer4
typedef enum { _timer5, _timer1, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t;

#elif defined(__AVR_ATmega32U4__)
#define _useTimer1
typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t;

#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
#define _useTimer3
#define _useTimer1
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t;

#elif defined(__AVR_ATmega128__) || defined(__AVR_ATmega1281__) || defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega2561__)
#define _useTimer3
#define _useTimer1
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t;

#else  // everything else
#define _useTimer1
typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t;
#endif

 

반응형
반응형

정말 최소한의 기본 설정 후 기본 소스에 컴파일 후 업로드를 했는데 에러가 뜬다.

 

컴퓨터는 잘못이 없다. 설정을 잘못한 다 내 잘못 ㅠ

프로세서를 ATmega328P (Old Bootloader)로 바꾸면 된다.(프로그래머는 건들지 않아도 됨)

그래도 최근에 구입한 보드인데.. 나노가 전부 전 버전 부트로더인가?

 

업로드 성공~~

반응형

+ Recent posts